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Abstract-The transient temperatures resulting from a periodic on-off heat flux boundary condition have 
many applications, including, among others, the sintering of catalysts frequently found during coke bum- 
off, and the use of laser pulses for annealing of semiconductors. In such situations, the duration of the 
pulses is so small (i.e. picosecond-nanosecond) that the classical heat diffusion phenomenon breaks down 
and the wave nature of energy propagation characterized by the hyperbolic heat conduction equation 
governs the temperature distribution in the medium. In this work, an explicit analytic solution is presented 
for a linear transient heat conduction problem in a semi-infinite medium subjected to a periodic on-off 
type heat flux at the boundary x = 0 by solving the hyperbolic heat conduction equation. The non-linear 

case allowing for the added effect of surface radiation into an external ambient is studied numerically. 

INTRODUCTION 

TRANSIENT heat conduction in solids subjected to a 
periodic on-off type surface heat gux has numerous 
practical applications, including the exothermic reac- 
tions present during coke burn-off, and the use of high 
energy pulse lasers. In the analysis of heat conduction 
involving extremely short times, the classical heat con- 
duction equation breaks down. In such situations, the 
hyperbolic heat conduction equation, allowing for a 
finite speed of propagation of thermal disturbances, 
more accurately models the transient temperature dis- 
tribution in the medium. Several authors have studied 
the effects of periodic on-off boundary conditions 
using the parabolic heat conduction equation. 
Carslaw and Jaeger [l] present an analytic solution 
for the temperature in a semi-infinite medium due to 
an applied heat flux that is turned off after some 
arbitrary time. Putterman and Guibert [2] consider a 
medium which is subjected to a periodically applied 
surface temperature and zero heat ffux, and present 
an iterated solution for the surface temperatures, 
while Hein [3] has studied cases involving periodically 
applied surface temperatures. However, the results of 
these studies are not applicable to situations invol~ng 
heating with extremely short pulses, such as those 
encountered in the exothermic reactions resulting 
from coke burn-off, and the pulse laser heating of 
semiconductors. Since the hyperbolic model includes 
a build-up period for the establishment of heat flow 

resulting from a thermal disturbance, the non-Fourier 
effects on temperature transients are expected to be 
strongly pronounced for the temperature of the sur- 
face at which on-off type pulsed heating of an 
extremely short pulse period is applied. 

The non-Fourier effects on temperature transients 
resulting from a continuously applied surface heat 
flux as well as a single volumetric pulse heat source 
applied within the medium have been studied 14-71. 
Chan et al. [S] stated that hyperbolic heat conduction 
may have significant effects on determining the tem- 
perature rise of crystals caused by exothermic reac- 
tions. In this work, the non-Fourier effects resulting 
from an on-off type periodic heating of an extremely 
short pulse period applied at the surface of a solid are 
studied by solving the hyperbohc heat conduction 
equation and making use of Duhamel’s theorem. The 
existing proofs of Duhamel’s theorem are all for para- 
bolic heat conduction problems. Therefore, before 
applying Duhamel’s theorem, it is shown that 
Duhamel’s theorem is also applicable for the hyper- 
bolic heat conduction equation. 

When the surface temperature is sufficiently high, 
as may often be the case in the above-mentioned appli- 
cations, the radiation losses from the surface into the 
externai ambient become important. In such situ- 
ations, the problem becomes nonlinear because of the 
radiation boundary condition. A numerical scheme is 
thus used to solve the resulting non-linear periodic 
problem with surface radiation. 
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1 
C 

‘;:r 
f(5) 

speed of propagation of thermal front 
specific heat 

reference heat flux 

s(t) 
k 

N 

dimensionless applied surface heat flux, 

dt)/fo 
dimensionless step change in surface 
heat flux for linear problem 
applied surface heat flux 
thermal conductivity 
conduction-to-radiation parameter, 

(kT,cla)l~T: 
P period of on-off surface heat flux 

q(x, t) heat flux 

NOMENCLATURE 

x physical distance. 

Greek symbols 

5 
Q (q, 5) dimensionless heat flux, q/f0 

t time 
T(x, t) temperature 

P 
cr 

r 

reference thermal diffusivity 
fraction of period P that surface heat 
flux is nonzero 
surface emissivity at q = 0 
dimensionless spatial distance, cx/2cr 
dimensionless temperature, T/T, 

dimensionless initial temperature 
dimensionless times at which step 
changes in surface heat flux occur 
dimensionless time, c2t/2u 
density 

Stefan-Boltzmann constant 
relaxation time, a/c’ 

T, reference temperature, (f Jo) 'I4 Y(q, 5) dimensionless temperature. 

U(z) unit step function 

I 

ANALYSIS 

Consider a semi-infinite region, initially at zero tem- 
perature, where a periodic on-off heat flux is applied 
at the boundary surface x = 0 for times t > 0. 
Assuming constant properties, the mathematical for- 
mulation of the hyperbolic heat conduction problem 
consists of the energy and non-Fourier heat flux equa- 
tions 

pc 

P 

f_W> t) + a&> 0 
at 

-=O, x>O,t>O (la) 
ax 

ad+ t) a Tk 4 
z-----+q(x,t)= -k-ax, x>O,t>O at 

(lb) 

where T(x, t) is the temperature, q(x, t) the heat flux, 
t = a/c’ the relaxation time, p the density, and C,, the 
specific heat. Clearly, as c + co, T -+ 0 and the Fourier 
heat flux equation is obtained, thus yielding the para- 
bolic heat conduction theory. The boundary and 
initial conditions are taken as 

4(0, t) = g(t), x = 0 (lc) 

T(x, t) = 0, x + co (14 

T(x, 0) = 0, t = 0 (14 

q(x, 0) = 0, t = 0. (If) 

Equations (la) and (lb) are combined and then 
nondimensionalized. We obtain 

O<q<cn,<<O (2a) 

Q@,5)=F(5), v=O (2b) 

Q(a,5) = 0, ‘I + CJz PC) 

O(r/,O) = 0, 5 = 0 (24 

Q(v>O, = 0, 5 = 0 (24 

where 

F(5) = 

i 

f(5) for the linear problem 

f (~)-s,t14(0, l) for the non-linear problem 

@a) 

f(5) = S(t)/fo W) 

0 = T/T, (34 

Q = qlfo (34 

q = CX/2U (3e) 

e = c2t/2u (30 

T, = (fo/o)“4 (34 

N = (T,kc/u)loT; (3h) 

f. = reference heat flux. 

We consider below the solution of the above problem 
for both the linear and non-linear cases. 

Linear problem 
To solve the periodic problem for the linear case, 

we consider a function Y (II, 5) satisfying an auxiliary 
problem similar to the one given by equation (2) but 
subjected to a continuous surface heat flux boundary 
condition F(t) = f o. The solution to this auxiliary 
problem is given by [4] 
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where U(z) is the unit step function 

(4b) 

The solution of problem (2) can be related to the 
solution of the auxiliary problem given by equation 
(4) by Duhamel’s theorem given in ref. [9] as (see 
appendix far the proof of the validity of Duhamel’s 
theorem for the case of hyperbolic heat conduction) 

where O,, is the initial condition, which is zero for the 

problem given by equation (2), and F(L) is the non- 
homogeneous part of the boundary condition. If the 
boundary condition function E’(J) has d&continuities, 

equation {5a) is integrated by parts, and the resulting 
alternative form of Duhamei’s theorem becomes 

where the &S are the times at which there is a step 
change in the surface heat flux (i.e. turned on and off 
for the cases studied here), the AF,s are the magnitudes 
of the step changes in the surface heat flux, and Y(+ <) 

is the fundamental solution with constant unit input. 
For the problem under consideration, the first term 
in equation (5b) does not contribute anything because 
the initial temperature 8, is zero. The second term 
vanishes since the derivative of the surface heat flux 

is zero over each interval. Therefore, only the third 
term contributes to the temperature distribution, and 
it represents the effects of the on-off step changes in 
the surface heat Aux. Then, using the auxiliary solu- 
tion Y(Q 5) given by equation {4), in Duhamel’s the- 
orem, equation (Sb), we obtain the temperature dis- 
tribution in a semi-infinite medium (or a finite medium 
before reflection) for a periodic on-ff type surface 
heat flux in the form 

x eC(t-‘J ~o(J~(~-Aj)Z--ylZ]} 

f cc - 4) 

+2 eC ~&,/(z2-~*)]d~ U(5-&-0). (6) 
I 

For the periodic problem with period P where the 

duration of heating is equal to bZ’, the parameter hi is 

defined as 

“= [(i- 1)/2+p]P, ( 

t cw, forE=0,2,4,5 ,... 

for i = 1,3,5,7,. . . Oa) 

and A& is related to fl, the fraction of the period P 
that the surface heat flux is nonzero, by 

“F.=l_:r Vb) 

Equation (7b) implies that the total amount of energy 
supplied to the surface during each period is equal to 
that which would have been supplied by a constant 
heat flux of unity applied over the entire period, P. 

The term (- l)i represents the an-off aspect of the 

heating. 
For each case considered, the hyperbolic solution 

is compared to the corresponding parabolic solution, 
which is obtained in a similar manner to the hyper- 

bolic solution, and is given by 

where 

ierfc (z) = Le-” - (2) erf (z) 
Jz 

@b) 

and AFl and Ai are as defined earlier. 

Non-hear problem 
The problem becomes non-linear when the radi- 

ation effects are included at the boundary surface. 
Here we consider a situation in which a periodic on- 

off heat flux is applied to the boundary, while the 
surface dissipates heat by radiation into an ambient: 
at zero temperature. The energy and non-Fourier flux 
equations (la) and (lb) are given, respectively, in 
dimensionless form as 

while the radiation boundary condition for this situ- 

ation is given by 

Q(O, 0 = f(i)-&os”(a, 0, I? = 0. UOa) 

The applied surface heat flux f(r) is defined as 

f(g) = {A’,. ;;,--‘l;;P;pGJ~;:b’BIP 
1 

J ‘= 1,2,3,... (lob) 

with j representing the number of periods. We note 
that as in the case of the finear problem, the total 
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energy supplied, f (<), during each period is equal 
regardless of the value of fi. In addition, e0 is the 
surface emissivity and N is the conduction-to-radi- 
ation parameter. 

The above hyperbolic problem with surface radi- 
ation and periodic surface heat flux is solved numeri- 
cally by MacCormack’s predictor-corrector scheme 
with the use of the modified equation as described in 
ref. [lo]. The scheme has been shown to handle the 
sharp wave fronts of hyperbolic heat conduction quite 
well 171. To use MacCormack’s method, equations 
(9a) and (9b) are first written in vector form as 

i?E 8F 
pi-+H=O, q>O,r>O 
a[ an 

(1 la> 

where 

E= (1 lb) 

(1 w 

(114 

Then, MacCormack’s method is applied to equations 
(11) to yield the following finite-difference for- 
mulation : 

predictor 

(&y+’ = (Eir-~(Fi+,-F,)“-Ae(H,)“; (12a) 

corrector 

Here, subscript i denotes the grid paint in the space 
domain, superscript n denotes the time level, the tilde 
denotes the predicted value at the time level n + I, and 
Aq and Al are the space and time steps, respectively. 
In this formulation, forward differencing is used in 
the predictor, while backward differencing is used in 
the corrector. In the present analysis, the modified 
equation approach (as discussed in ref. [lo]) is 
used to reduce the magnitude of the truncated 
error terms. This involves subtracting the leading 
error terms of the modified equation from the finite- 
difference scheme. When this is done, equation (11) 
takes the form 

8E 8Fo 

a;-+--+H=o a? 
(134 

where F. replaces F, and is defined as 

F, = F--&,--A3 Wb) 

The accuracy of the numerical scheme used here 
was verified for the periodic problem by comparing 
the numerical solution of the linear periodic problem 
with the analytical solution given by equation (6). In 
the numerical solution of the linear periodic problem, 
spikes appeared at the discontinuities. These spikes 
are in part due to the use of a low Courant number, 
v = At/An, needed to obtain stable solutions with the 
pulsed boundary condition. The low Courant number 
increases the magnitude of the error terms in the 
numerical solution, The spikes are a dispersive effect 
resulting from the odd derivative error terms. This 
dispersive effect can be reduced by increasing An at 
the expense of increasing the dissipative effect of the 
even derivative error terms which in turn reduces the 
temperature gradients at the wave fronts [7]. In the 
present investigation, the use of smaller mesh intervals 
appeared to produce very good agreement between 
the numerical and exact analytic solutions. The 
numerical and analytical solutions agreed quite well 
everywhere except at these spikes. 

The hyperbolic solution with surface radiation is 
compared to the corresponding parabolic solution 
with surface radiation. When surface radiation is 
included in the formulation, both the parabolic and 
the hyperbolic problems become nonlinear ; therefore 
they are solved numericahy. A central differenced, 
implicit, finite-difference scheme with iterations due 
to the radiation boundary condition is used to cal- 
culate the temperatures from the parabolic heat con- 
duction equation. 

RESULTS AND DISCUSSION 

The surface and medium temperatures are obtained 
by the use of the hyperbolic and parabolic heat con- 
duction equations for a semi-infinite medium with a 
periodic on-off surface heat flux. For the cases involv- 
ing no surface radiation, the analytic solutions given 
by equations (6) and (8a) are used to obtain the tem- 
perature distributions, while the numerical solutions 
are used for the cases involving surface radiation. The 
temperature transients for the cases fl= 0.5 and 1 .O 
are compared, with jS = 1.0 corresponding to a con- 
stant heat flux of unity applied at the boundary over 
the entire period. For all cases considered, we have 
taken the length of the period to be P = 0.1, and the 
conduction-to-radiation parameter N to be equal to 
unity. For each case, a heat flux of strength equal to 
l/p stayed on for a time of/P from the beginning of 
each period P. Thus, the total heat flux supplied to 
the medium remained the same for each period P 
regardless of the value of 8. 

Figure 1 shows the hyperbolic and parabolic surface 
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FIG. 1. Analytic comparison of the effects of periodic surface 
heat flux on hyperbolic and parabolic surface temperatures 

with no surface radiation (i.e. s0 = 0). 

temperatures for j3 = 0.5 and 1.0. The surface tem- 
peratures for /I = 0.5 for both the parabolic and 
hyperbolic cases oscillate around the /I’ = 1 .O solution. 
However, we notice surface temperatures are much 
higher for the hyperbolic solution than the parabolic 
solution. In both the hyperbolic and parabolic solu- 
tions, the maximum surface temperature for /3 = 0.5 
is l/b = 2.0 times that of the constant flux (/I = 1.0) 
solution during the time 5 < j?P. The parabolic solu- 
tions for all p, however, approach zero as the time 
approaches zero; but this is not the case with the 
hyperbolic solutions, which approach a value of l//i’ 
as the time approaches zero. Thus, with fl= 0.5, the 
surface temperature from the hyperbolic problem at 
5 = O+ is equal to 2.0. Similarly, if /I = 0.1, the hyper- 
bolic surface temperature would be equal to 10.0 at 
5 = O+. As a result, at early times there is a large 
difference between temperatures for different values 
of /I in the hyperbolic solution, but not in the parabolic 
solution (since it approaches zero). We also notice 
that the amplitudes of the oscillations are much larger 
for the hyperbolic solution than the parabolic 
solution. The temperature distributions were also cal- 
culated for a larger time, 5 = 10. The temperature 
amplitudes for b = 0.5 remained approximately 
unchanged, although the absolute temperatures con- 
tinued to increase for both the hyperbolic and para- 
bolic solutions. At l = 10, the p = 1 solutions for the 
surface temperature attained values about O(0, 5) = 
5.0, approximately at the midpoint of the oscillating 
temperatures. 

Figure 2(a) shows a comparison of the medium 
temperatures for both the hyperbolic and parabolic 
problems with b = 0.5 and 1 .O at time 5 = 1. We 

_ HYPERBOLIC 

____ PARABOLIC 

a25 0.50 0.75 1.0 

POSITION, T) 

FIG. 2(a). Analytic comparison of the effects of periodic 
surface heat flux on hyperbolic and parabolic medium tem- 
peratures at time l = 1 with no surface radiation (i.e. E,, = 0). 

notice that in the region away from the surface, the 
periodic surface heat flux has little effect on the para- 
bolic temperatures. However, for the hyperbolic case, 
the temperature oscillations continue to propagate 
into the medium (though with decreasing amplitude), 
and as a result there is a noticeable difference between 
the periodic and constant flux temperature solutions. 
Figure 2(b) shows the behavior of the medium tem- 
peratures at time 5 = 10.0 with /I = 0.5. It is inter- 
esting to note that the hyperbolic and parabolic tem- 
peratures have nearly converged by the position rl = 5. 
Although only the solution for a periodic flux with 
/I = 0.5 is shown, the temperature distributions with 
p = 1.0 for both the hyperbolic and parabolic cases 
are very similar to the parabolic case with b = 0.5. It 
has been shown in previous works [7, 11, 121 that the 
hyperbolic and parabolic solutions converge for large 
times for various types ofproblems. Figure 2(b) shows 
that the hyperbolic and parabolic temperature dis- 
tributions with periodic surface heat flux do begin to 
converge for relatively large times. However, for short 
times, the parabolic solution underestimates the 
maximum temperatures by a large amount. 

The effects of surface radiation on the surface tem- 
perature are shown in Fig. 3 for /3 = 0.5 and 1.0. 
Again, the hyperbolic and parabolic solutions are 
both plotted for comparison. Due to the inclusion 
of surface radiation, both hyperbolic and parabolic 
solutions are calculated numerically. In Fig. 3, spikes 
occurring at each discontinuity in the numerical solu- 
tion result, as discussed previously, from the use of 
the low Courant number. We notice that with surface 
radiation, the hyperbolic and parabolic solutions con- 
verge more rapidly. This was also demonstrated for 
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FIG. 2(b). Analytic comparison of the effects of periodic 
surface heat flux on hyperbolic and parabolic medium tem- 
peratures for p = 0.5 at timer = 10 with no surface radiation 

(i.e. c0 = 0). 

several non-periodic cases in an earlier work [1 11. 
The surface radiation not only lowers the tem- 
peratures at the surface r) = 0, but also brings the 
maximum hyperbolic and parabolic temperatures 
much closer together. This is due in part to the fact 
that in the hyperbolic solution, more energy is radi- 
ated to the ambient than in the parabolic solution 
because the surface temperatures are larger. Thus, 
when surface radiation is present, the parabolic heat 
conduction equation does not underestimate the early 
time temperatures as much as when no surface radi- 
ation is present. The surface temperatures were also 
calculated to a time 5 = IO. At time 5 = 10, the hyper- 
bolic and parabolic temperatures for b = 1 have con- 
verged, and with the surface temperature near 
B(0, 5) = 0.95, seem to be nearing a steady-state value. 
The periodic cases also appear to have reached a 
quasi-equilibrium temperature distribution, with the 
parabolic temperature oscillating between 0.75 and 
1.05, while the hyperbolic temperature oscillates 
between 0.55 and 1 .l. 

The medium temperatures at time 5 = I are shown 
in Fig. 4 with the presence of surface radiation for 
a0 = 1.0. The shape of the curves seem to resemble 
those in Fig. 2(a) except that the magnitudes of the 
temperatures are reduced as a result of the surface 
radiation. The time for convergence between the fi = 1 
solutions is also much less due to the radiation losses. 
The spikes on the temperature pulses are again a result 
of the dispersive effect of the leading error terms. 

In conclusion, the parabolic heat conduction equa- 
tion underestimates the temperatures near the sur- 
face for early times when a periodic surface heat flux 

_ HYPERBOLIC. ____ PARABOLIC 

i \ \ 

0.0 0.25 0.50 

TIME. t 

FIG. 3. Comparison of the effects of periodic surface heat 
flux and surface radiation on the hyperbolic and parabolic 

surface temperatures with E,, = 1. 

- HYPERBOLIC 
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____ PARABOLIC 
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POSITION, ?) 

FIG. 4. Comparison of the effects of periodic surface heat 
flux and surface radiation on the hyperbolic and parabolic 

medium temperatures with s0 = 1 at time 5 = 1. 

of extremely short periods is applied. The hyperbolic 
and parabolic solutions converge in the interior region 
both with increasing distance from the surface and 
increasing time. Also, the convergence of the hyper- 
bolic and parabolic solutions occurs more rapidly 
with increasing surface radiation. 
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APPENDIX 

In the following analysis, we follow the formalism used in 
ref. [9] to prove Duhamel’s theorem for the case of periodic 
hyperbolic heat conduction. The governing equations are 

1 
V’T(r, 1) + ; g(r, t) = cc 

a*T(r,r) aT(r,r) 
z atz + ~ at > 

in region R, t z 0 (Ala) 

q(r, t) + h,T(r, t) = f,(r, I) on boundary S,, t > 0 

(Alb) 

T(r, t) = F(r) in region R, t = 0 (Ale) 

am d 
~ = 0 at in region R, t = 0 (Al4 

where q(r, t) is obtained from 

Mb t) a T(r, 0 
57 + q(r,t) = -kan. (Ale) 

with 

q(r, 0) = q,,(r) in region R, t = 0. (Al0 

We now consider the following auxiliary problem in which 
4 (r, 1, y) is the solution of problem (Al) on the assumption 
that the non-homogeneous terms f,(r, t) and g(r, f) do not 
depend on time 

W(r,r,y)+~g(r,y)=~ T at2 ( a*de,t,~) + &b(r,t,~) 
~ at > 

$(r,s) = 
m m 

ss 
e-(r+‘“4(r,l,y)dtdy. (A6) 

0 II 

in region R, t > 0 (A2a) 

W,~,y)+h4(r,~,y) = f&,~) 

on boundary Si, t > 0 (A2b) 

4(r, f, y) = F(r) in region R, t = 0 (‘42~) 

W(r,t,~) ~ = 0 at in region R, t = 0 W-4 

where T(r, t, y) is obtained from 

ar(r, t, Y) a+ (rr f, Y) 
r- + T(r,t,y) = -k- at ani We) 

with 

r(r, f, y) = q,(r) in region R, t = 0. (A20 

The Laplace transform of equations (Ala)-(Alf) with 
respect to f gives 

V2p(r, s) + k g(r, s) = L 
( 

d T(r, S) -rsF(r) 

dT(r, 0) 
-7 ~ + st(r, s) -F(r) at > 

in region R (A3a) 

q(r, S) + h,P(r, s) = yi(r, s) on boundary S, (A3b) 

aT(r, S) 
r[sq(r,s)--q,(r)]+q(r,S) = -k- 

an, 
(A3c) 

where s is the Laplace transform variable. Similarly, the 
Laplace transform of the auxiliary problem (A2) with respect 
to r becomes 

V*%s,y) + is(r.Y) = k rs’&r,s,r) 

ad (r, 0,O) 
-zsF(r)-z at ~ + s$(r. s, Y) -F(r) 

> 

in region R 

P(r,s,y)+h,$(r,s,y) = f f,(r,y) on boundary S, 

r[sT(r,S,y)-q,(r)]+P(r,s,y) = -kw. 

(A44 

Wb) 

(A4c) 

We now operate on equations (A4) with the operator 

I 

m 
e-q dy 

0 

and utilize the definition of the Laplace transform and obtain 

= 1 
V’+(r,s) + - #(r,s) = i 

sk ( 
&(r,s)--F(r) 

7 84 (r, 0,O) _-_____ 
S at +sJ(r,s)-F(r)/s 

1 

in region R (A5a) 

= = 1 
T(r,s)+h,d(r,s) = -A(r,s) 

S 
on boundary S, (A5b) 

= 

r[s?(r, s) - q,(r)/s] + ?(r, s) = 
a$ (r, s) 

-k an 
(A5c) 

= = 
4 (r, s, s) = 9 6,s). 

Also, $(r, S) is defined as 

(A54 

Now multiply both sides of equations (ASa)(ASc) by s 
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v&r, s) + ; g(r, s) = ; ( zs2[s&r, s)] 

a+ k 0) 
-mF(r)- zdt + s[s$(r,s)]-F(r) 

> 

in region R (A74 

s?(r,~)fh~s$(r,s) = x(r.s) on boundary S, (A7b) 

as; (r, s) z[s2B(r,s)-qqo(r)]+sY(r,s) = -k-F. (A7c) 

A comparison of equations (A3at(A3c) and (A7a)-(A7c) 
reveals that they are identical problems if 

F (r, s) = s$ (r. s) (A84 

yielding 

P(r,s, = s 
_ m 

ss 
em’Y+‘ti$(r,t,y)dtdy (Agb) 

0 0 

and 

q(r, s) = sF(r, s) (Age) 

yielding 

iu m 
&r, s) 2 s 

0” 
e&r+‘* ?(r, t,v)dt d;f. (Agd) 

0 0 

Now consider a general function 4 (r, t, y) where the con- 
volution is 

cP*(r,t) = 
s 

$(r,r--y,y)dy (A9) 
0 

and the Laplace transform of this generalized convolution 
becomes 

Y[d,*(r, r)l = $*(r,s) WOf 

A comparison of equations (ASa), (A8b) and (AlO) yields 

Y[[T(r, r)] = s#i*(r,s). (Al 1) 

By the de~nition of the Laplace transform, we have 

Y[T(r, t)] = 2 ( ) v 
since 

4 *(r, 0) = 0. 

Now invert equation (A12) 

(A13) 

a#*@, 4 
T(r, t) = --;$i (A14) 

Use equation (A9) to obtain 

T(r,tl=~ ‘Ch(r,r-y,vldr 
s 0 

(A13 

which is Duhamel’s theorem. If differentiation is performed 
under the integral sign, equation (A 15) becomes 

T(r, 1) = F(r) + (A16) 

If only one of the boundary conditions, say, at the surface 
i = 1, is non-homogeneous and a function of time only (i.e. 
f,(t)), then equation (A16) can be written as 

rr 1 
T(r,t)=F(r)+ f1(p)i4(r,r-y)dy 

J 
(A17) 

0 

where Ip(r, t) is the solution of the auxiliary problem (A2) 
with f,(r, y) replaced by the Dirac delta function 6 ,p Clearly, 
equation (A17) is the specific form of Duhamel’s theorem 
used in equation (Sa) in the text. 

EFFETS NON-FOURIER SUR LA TEMPERATURE VARIABLE RESULTANT DUN 
FLUX PERIODIQUE TOUT-OU-RIEN 

R&n&--Les temperatures variables resultant dune condition aux limites de flux tout-ou-rien se rencon- 
trent dans plusieurs applications, et parmi d’autres, le frittage des catalyseurs et l’utilisation des impulsions 
laser pour traiter les semi-conducteurs. Dans de telles conditions, la dur&e des impulsions est si courte 
(picos~nd~nanoseconde) que le ph~nom~ne classique de diffusion thermique disparait et la nature 
ondulatoire de la propagation d’energie caracterisee par l’equation hyperbolique de la chaleur gouverne 
la distribution de la temperature dans le milieu. On presente ici une solution analytique explicite pour un 
probleme de conduction thermique lineaire et variable dans un milieu semi-infini soumis a un flux ptriodique 
tout-ou-rien a la frontitre x = 0, en rtsolvant l’bquation hyperbolique de la chaleur. Le cas non-lineaire 

pour un rayonnement de la surface est etudii numiriquement. 

EINFLUSS EINES PERIODISCHEN EIN-AUS-SCHALTENS DES WARMESTROMS AUF 
DEN ZEITLICHEN TEMPERATURVERLAUF IN EINEM KC)RPER 

Z~ammenf~sung-Zeitliche Temperaturverl~ufe, welche von einem periodischen Ein- und Aus-Schalten 
eines W&mestroms als Randbedingung herriihren, sind vielfach anzutretfen : unter anderem beim Sintern 
von Katalysatoren, was hiiufig beim Ausbrennen von Koks vorkommt und beim Einsatz von Laserimpulsen 
zum Brennen von Halbleitem. In solchen Situationen ist die Impulsdauer so klein (z.B. Pica-, Nano- 
sekunden), dal3 das klassische Warmeausbreitungsphanomen zusammenbricht und die Wellennatur der 
Energieausbreitung nach der hyperbolischen Wlrmeleitgleichung die Temperaturverteihmg in dem 
Medium bestimmt. In dieser Arbeit wird fur ein lineares transientes Wiirmeleitproblem in einem halb- 
unendlichen Medium, das einem periodischen Ein- und Aus-Schalten des Warmestroms an der Grenz- 
Aache x = 0 untenvorfen ist, eine explizite analytische Liisung der hyperbohschen W~rmeieitgleichung 
vorgestellt. Der nichtlineare Fall, der den zudtzlichen EmfluB der Ober~~chenstrahlung an eine 

exteme Umgebung ~r~cksichtigt, wird numerisch untersucht. 
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BJIWIHME IIBIIEHMn, HE l-IOflWiH5HOII&iXC5I 3AKOHY @YPbE, HA 
HECTAUMOHAPHOE TEMIIEPATYPHOE IIOJIE, BbI3BAHHOE ITEPMO~WIECKAM 

TEI-IJIOBbIM I’IOTOKOM 

AumoTauw#-HecTawoHapHoe TeMnepaTypHoe none, B03HHKahmw npw H~H~HH nepHomrecKor0 Ten- 

nOBOr IIOTOKa Ha rpaHHUe,UIHpOKO IIpHMeHKeTCK Ha IlpaKT&iKe,iiallpHMep,IIpH ClTeKaHHH KaTaJIH3a- 

TOpa, IlpH BbIrOpaHHH KOKCa, a TaKke IlpH HCllOnb30BaHHH na3epHbIX HMllynbCOB &IIK OTXHI-a 

nOny,lpOBOAH~KOB. B TeX CJl)‘WnX, KOrAa AJlHTenbHOCTb HMIIyJlbCOB HaCTOnbKO MaJla (T..?. OT IlSiKOCe- 
Ky~njxo HaHoceKyHn), 9~0 KnaccmecKHP 3aKoHnsi~y3~~TennaHapyrnaeTccn, pacnpenenewerekfnepa- 
rypbl B cpene onpenennercn BonHonoii npHponok pacnpompaHeHHs 3HeprHH H 0nHcblBaeTcn 

rHIIep60nWIeCKHM ypaBHeHHeM TenJIonpoBonHocTH. B AaHHOfi pa6oTe Ha OCHOBe rHnep60JIWECKOrO 
ypaBHeHHS ,‘lpHBOAHTCK IlBHOe aH&XHTHWCKOe p,“eHHe nHHeiiHOii H.XTaUHOHapHOk 3il&NH Te,,,lOlTpO- 

BOAH~CTH B nony6ecKoHesHok cpene,Haxonnlueiica non Bo3neiicrBHeh4 nepHonmecKor0 noToKa Tenna 

Ha rpaHHUC X = 0. kknHH&HbIii CJlyWifi, paCCMaTpHBi3lOUJHid HaRH’iHe H3Jl)“iCHHIl C IlOBCpXHOCTH B 
o*y~amuymcpeny,H3yraeTcn SHcneiiHo. 
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