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Abstract—The transient temperatures resulting from a periodic on—off heat flux boundary condition have
many applications, including, among others, the sintering of catalysts frequently found during coke burn-
off, and the use of laser pulses for annealing of semiconductors. In such situations, the duration of the
pulses is so small (i.e. picosecond-nanosecond) that the classical heat diffusion phenomenon breaks down
and the wave nature of energy propagation characterized by the hyperbolic heat conduction equation
governs the temperature distribution in the medium. In this work, an explicit analytic sotution is presented
for a linear transient heat conduction problem in a semi-infinite medium subjected to a periodic on—off
type heat flux at the boundary x = 0 by solving the hyperbolic heat conduction equation. The non-linear
case allowing for the added effect of surface radiation into an external ambient is studied numerically.

INTRODUCTION

TRANSIENT heat conduction in solids subjected to a
periodic on—off type surface heat flux has numerous
practical applications, including the exothermic reac-
tions present during coke burn-off, and the use of high
energy pulse lasers. In the analysis of heat conduction
involving extremely short times, the classical heat con-
duction equation breaks down. In such situations, the
hyperbolic heat conduction equation, allowing for a
finite speed of propagation of thermal disturbances,
more accurately models the transient temperature dis-
tribution in the medium. Several authors have studied
the effects of periodic on—off boundary conditions
using the parabolic heat conduction equation.
Carslaw and Jaeger [1] present an analytic solution
for the temperature in a semi-infinite medium due to
an applied heat flux that is turned off after some
arbitrary time. Putterman and Guibert [2] consider a
medium which is subjected to a periodically applied
surface temperature and zero heat flux, and present
an iterated solution for the surface temperatures,
while Hein [3] has studied cases involving periodically
applied surface temperatures. However, the results of
these studies are not applicable to situations involving
heating with extremely short pulses, such as those
encountered in the exothermic reactions resulting
from coke burn-off, and the pulse laser heating of
semiconductors. Since the hyperbolic model includes
a build-up period for the establishment of heat flow

resulting from a thermal disturbance, the non-Fourier
effects on temperature transients are expected to be
strongly pronounced for the temperature of the sur-
face at which on—off type pulsed heating of an
extremely short pulse period is applied.

The non-Fourier effects on temperature transients
resulting from a continuously applied surface heat
flux as well as a single volumetric pulse heat source
applied within the medium have been studied [4-7].
Chan er al. [8] stated that hyperbolic heat conduction
may have significant effects on determining the tem-
perature rise of crystals caused by exothermic reac-
tions. In this work, the non-Fourier effects resulting
from an on-—off type periodic heating of an extremely
short pulse period applied at the surface of a solid are
studied by solving the hyperbolic heat conduction
equation and making use of Duhamel’s theorem. The
existing proofs of Duhamel’s theorem are all for para-
bolic heat conduction problems. Therefore, before
applying Duhamel’s theorem, it is shown that
Duhamel’s theorem is also applicable for the hyper-
bolic heat conduction equation.

When the surface temperature is sufficiently high,
as may often be the case in the above-mentioned appli-
cations, the radiation losses from the surface into the
external ambient become important. In such situ-
ations, the problem becomes nonlinear because of the
radiation boundary condition. A numerical scheme is
thus used to solve the resulting non-linear periodic
problem with surface radiation.
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NOMENCLATURE
c speed of propagation of thermal front X physical distance.
C, specific heat
fo reference heat flux Greek symbols
S(&) dimensionless applied surface heat flux, o reference thermal diffusivity
g/ fo B fraction of period P that surface heat
AF, dimensionless step change in surface flux is nonzero
heat flux for linear problem €0 surface emissivity at # = 0
g(t)  applied surface heat flux n dimensionless spacial distance, cx/2a
k thermal conductivity 0(n,¢) dimensionless temperature, T/T,
N conduction-to-radiation parameter, 0, dimensionless initial temperature
(kT.c/o)/aT? A dimensionless times at which step
P period of on—off surface heat flux changes in surface heat flux occur
q(x,t) heat flux ¢ dimensionless time, ¢’t/2x
Q(n, &) dimensionless heat flux, ¢/ f, P density
t time o Stefan—Boltzmann constant
T(x,t) temperature T relaxation time, a/c?
T, reference temperature, (f,/0)"* ¥(n,¢) dimensionless temperature.
U(z) unit step function

ANALYSIS

Consider a semi-infinite region, initially at zero tem-
perature, where a periodic on—off heat flux is applied
at the boundary surface x =0 for times ¢> 0.
Assuming constant properties, the mathematical for-
mulation of the hyperbolic heat conduction problem
consists of the energy and non-Fourier heat flux equa-
tions

0T(x,1) aq(x, t)

pC,~— 2 x =0, x>0,t>0 (la)
0q(x, 1) _ 0T (x,1)
T +g(x, ) = _k‘T’ x>0,:>0
(1b)

where T'(x, 1) is the temperature, g(x, ) the heat flux,
© = a/c’ the relaxation time, p the density, and C, the
specific heat. Clearly, as ¢ — o0, T — 0 and the Fourier
heat flux equation is obtained, thus yielding the para-
bolic heat conduction theory. The boundary and
initial conditions are taken as

q(0,1) = g(1), x=0 (Ie)
T{x,)=0, x— (1d)
T(x,0)=0, t=0 (1e)
q(x,00=0, t=0. (1f)

Equations (la) and (1b) are combined and then
nondimensionalized. We obtain

2°0(n,¢) N ,0@.8) 2 %f;];é)’

- oe? o¢
O<np<ow,é<0 (2a)
Q0(0,8) = F(¢), (2b)

n=0

8(n,{) =0, n—>oo (20)

0(n,0)=0, (=0 2d)

Q»0=0, (=0 (2¢)
where
F(&)=

{f &) for the linear problem

F(E)—e,04(0,¢)  for the non-linear problem

(3a)

F &) =g/ fo (3b)

6= T/T. (3c)

Q=4q/fo (3d)

n=cx/20 (3e)

&= ctf2a (3f)

T, = (fo/o)" ()

N = (T kc/o)/a T} (3h)

fo = reference heat flux.

We consider below the solution of the above problem
for both the linear and non-linear cases.

Linear problem

To solve the periodic problem for the linear case,
we consider a function ¥ (z, £) satisfying an auxiliary
problem similar to the one given by equation (2), but
subjected to a continuous surface heat flux boundary
condition F(&) = f, The solution to this auxiliary
problem is given by [4]



Non-Fourier effects on transient temperature resulting from periadic on—off heat flux

Y, &) = (fo/N) {6—510[\/(52,,,2)]

4
+2 J e fo[\/("2~’72)}d'€} Ut—m) (@)

where U(z) is the unit step function
1, z>0
VD=0, :z<o.
The solution of problem (2) can be related to the
solution of the auxiliary problem given by equation
(4) by Duhamel’s theorem given in ref. [9] as (see

appendix for the proof of the validity of Duhamel’s
theorem for the case of hyperbolic heat conduction)

a¥(n,{—4)
o

where 8, is the initial condition, which is zero for the
problem given by equation (2), and F(1) is the non-
homogeneous part of the boundary condition. If the
boundary condition function F(4) has discontinuities,
equation {5a) is integrated by parts, and the resuiting
alternative form of Duhamel’s theorem becomes

A
G(n,f)=00+j W, - A)ddg) m

(4b)

6. &)= 99+J§F( di (5a)

+'Y W E-)AF, (b)

where the As are the times at which there is a step
change in the surface heat flux (i.e. turned on and off
for the cases studied here), the AF;s are the magnitudes
of the step changes in the surface heat flux, and ¥(, £)
is the fundamental solution with constant unit input.
For the problem under consideration, the first term
in equation (5b) does not contribute anything because
the initial temperature 8, is zero. The second term
vanishes since the derivative of the surface heat flux
is zero over each interval. Therefore, only the third
term contributes to the temperature distribution, and
it represents the effects of the on—off step changes in
the surface heat flux. Then, using the auxiliary solu-
tion W{y, &) given by equation (4), in Duhamel’s the-
orem, equation (5b), we obtain the temperature dis-
tribution in a semi-infinite medium (or a finite medium
before reflection) for a periodic on—off type surface
heat flux in the form

00,8) = 3, (AF/N)UIE-1])
x {e“) IIE=4) =)

(&~ 1)
+2J: e"[o[\/(fz—ﬂz)]d'f} U—4—n. (6

For the periodic problem with period P where the
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duration of heating is equal to §P, the parameter 4;is
defined as

) {[i/zzf..
T UG- D2+ B1P,

and AF, is related to 8, the fraction of the period P
that the surface heat flux is nonzero, by

AF, = =D .
B

Equation {7b) implies that the total amount of energy
supplied to the surface during each period is equal to
that which would have been supplied by a constant
heat flux of unity applied over the entire period, P.
The term (— 1) represents the on-off aspect of the
heating.

For each case considered, the hyperbolic solution
is compared to the corresponding parabolic solution,
which is obtained in a similar manner to the hyper-
bolic solution, and is given by

fori=10,2,4,6,...

fori=1,3,57.. (8

(7b)

001, 8) = 22 3 (AFINY(E—4)
i

. i
x ierfc (
J

—_— V(&= A, 8
i2(¢~m1) €-4) @a)

where

ierfc (z) = \7& eI —(2)erf(2) (8b)
14

and AF, and 4, are as defined earlier.

Non-linear problem

The problem becomes non-linear when the radi-
ation effects are included at the boundary surface.
Here we consider a situation in which a periodic on—
off heat flux is applied to the boundary, while the
surface dissipates heat by radiation into an ambient
at zero temperature. The energy and non-Fourier flux
equations {la) and (1b) are given, respectively, in
dimensionless form as

0 130 ,

5£+ﬁa 0, ﬂ)G,g>0 (9&)
0

Q+N ,H20=0 10620 ()

4

while the radiation boundary condition for this situ-
ation is given by

20,8 = f{O)—e0*(0, &),
The applied surface heat flux f(£) is defined as

n=~0.(l10a)

. {l/ﬁ, U—11P < & < [(i— 1)+ BIP
F@=, [G-n+pP<E<iP
j=1,2,3,... (10b)

with j representing the number of periods. We note
that as in the case of the linear problem, the total
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energy supplied, f(&), during each period is equal
regardless of the value of B. In addition, g, is the
surface emissivity and N is the conduction-to-radi-
ation parameter.

The above hyperbolic problem with surface radi-
ation and periodic surface heat flux is solved numeri-
cally by MacCormack’s predictor—corrector scheme
with the use of the modified equation as described in
ref. [10]. The scheme has been shown to handle the
sharp wave fronts of hyperbolic heat conduction quite
well [7]. To use MacCormack’s method, equations
(9a) and (9b) are first written in vector form as

JE 0OF

%+5’;+H=O, n>0,£>0 {11a)
where

E lgl 11b
=10 (11b)

IN
F= ]%9 1 (11c)

0

H= 20/ (11d)

Then, MacCormack’s method is applied to equations
(11) to yield the following finite-difference for-
mulation:

predictor
E)* =€) — %(Fi+.~r,)"-Aaf<H.-)"; (122)

corrector
1
(Ei)ﬂq = E {(Ei)” + (Ei)”+ !

- g(fﬂ—f?f- Dl —Aé(ﬁf)"“]- (12b)
An

Here, subscript i denotes the grid point in the space
domain, superscript n denotes the time level, the tilde
denotes the predicted value at the time level n+ 1, and
An and A£ are the space and time steps, respectively.
In this formulation, forward differencing is used in
the predictor, while backward differencing is used in
the corrector. In the present analysis, the modified
equation approach (as discussed in ref. [10]) is
used to reduce the magnitude of the truncated
error terms. This involves subtracting the leading
error terms of the modified equation from the finite-
difference scheme. When this is done, equation (11)
takes the form

JE JF,
55+_071_+H"0 (13a)
where F, replaces F, and is defined as
Fo=F—A,—A; (13b)
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1 3°F
A, = i(An)z <(1 —VZ)W) (13¢)
1 J°E
A3 = ‘—ﬁ (An)3 (3V(] -—vz)g;l-:;) (13d)

The accuracy of the numerical scheme used here
was verified for the periodic problem by comparing
the numerical solution of the linear periodic problem
with the analytical solution given by equation (6). In
the numerical solution of the linear periodic problem,
spikes appeared at the discontinuities. These spikes
are in part due to the use of a low Courant number,
v = A¥/Ayn, needed to obtain stable solutions with the
pulsed boundary condition. The low Courant number
increases the magnitude of the error terms in the
numerical solution, The spikes are a dispersive effect
resulting from the odd derivative error terms. This
dispersive effect can be reduced by increasing Ay at
the expense of increasing the dissipative effect of the
even derivative error terms which in turn reduces the
temperature gradients at the wave fronts [7]. In the
present investigation, the use of smaller mesh intervals
appeared to produce very good agreement between
the numerical and exact analytic solutions. The
numerical and analytical solutions agreed quite well
everywhere except at these spikes.

The hyperbolic solution with surface radiation is
compared to the corresponding parabolic solution
with surface radiation. When surface radiation is
included in the formulation, both the parabolic and
the hyperbolic problems become nonlinear ; therefore
they are solved numerically. A central differenced,
implicit, finite-difference scheme with iterations due
to the radiation boundary condition is used to cal-
culate the temperatures from the parabolic heat con-
duction equation.

RESULTS AND DISCUSSION

The surface and medium temperatures are obtained
by the use of the hyperbolic and parabolic heat con-
duction equations for a semi-infinite medium with a
periodic on—off surface heat flux. For the cases involv-
ing no surface radiation, the analytic solutions given
by equations (6) and (8a) are used to obtain the tem-
perature distributions, while the numerical solutions
are used for the cases involving surface radiation. The
temperature transients for the cases f = 0.5 and 1.0
are compared, with f§ = 1.0 corresponding to a con-
stant heat flux of unity applied at the boundary over
the entire period. For all cases considered, we have
taken the length of the period to be P = 0.1, and the
conduction-to-radiation parameter N to be equal to
unity. For each case, a heat flux of strength equal to
1/B stayed on for a time of P from the beginning of
each period P. Thus, the total heat flux supplied to
the medium remained the same for each period P
regardless of the value of §.

Figure 1 shows the hyperbolic and parabolic surface
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F1G. 1. Analytic comparison of the effects of periodic surface
heat flux on hyperbolic and parabolic surface temperatures
with no surface radiation (i.e. ¢, = 0).

temperatures for § = 0.5 and 1.0. The surface tem-
peratures for f=0.5 for both the parabolic and
hyperbolic cases oscillate around the § = 1.0 solution.
However, we notice surface temperatures are much
higher for the hyperbolic solution than the parabolic
solution. In both the hyperbolic and parabolic solu-
tions, the maximum surface temperature for f = 0.5
is 1/8 = 2.0 times that of the constant flux (f = 1.0)
solution during the time ¢ < SP. The parabolic solu-
tions for all f, however, approach zero as the time
approaches zero; but this is not the case with the
hyperbolic solutions, which approach a value of 1/§
as the time approaches zero. Thus, with § = 0.5, the
surface temperature from the hyperbolic problem at
¢ = 0% isequal to 2.0. Similarly, if § = 0.1, the hyper-
bolic surface temperature would be equal to 10.0 at
£ =07 As a result, at early times there is a large
difference between temperatures for different values
of fin the hyperbolic solution, but not in the parabolic
solution (since it approaches zero). We also notice
that the amplitudes of the oscillations are much larger
for the hyperbolic solution than the parabolic
solution. The temperature distributions were also cal-
culated for a larger time, ¢ = 10. The temperature
amplitudes for f = 0.5 remained approximately
unchanged, although the absolute temperatures con-
tinued to increase for both the hyperbolic and para-
bolic solutions. At ¢ = 10, the f = 1 solutions for the
surface temperature attained values about (0, &) =
5.0, approximately at the midpoint of the oscillating
temperatures.

Figure 2(a) shows a comparison of the medium
temperatures for both the hyperbolic and parabolic
problems with f=0.5 and 1.0 at time £ =1. We
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FiG. 2(a). Analytic comparison of the effects of periodic
surface heat flux on hyperbolic and parabolic medium tem-
peratures at time ¢ = 1 with no surface radiation (i.e. g, = 0).

notice that in the region away from the surface, the
periodic surface heat flux has little effect on the para-
bolic temperatures. However, for the hyperbolic case,
the temperature oscillations continue to propagate
into the medium (though with decreasing amplitude),
and as a result there is a noticeable difference between
the periodic and constant flux temperature solutions.
Figure 2(b) shows the behavior of the medium tem-
peratures at time £ = 10.0 with = 0.5. It is inter-
esting to note that the hyperbolic and parabolic tem-
peratures have nearly converged by the positiony = §.
Although only the solution for a periodic flux with
B = 0.5 is shown, the temperature distributions with
B = 1.0 for both the hyperbolic and parabolic cases
are very similar to the parabolic case with § = 0.5. It
has been shown in previous works {7, 11, 12] that the
hyperbolic and parabolic solutions converge for large
times for various types of problems. Figure 2(b) shows
that the hyperbolic and parabolic temperature dis-
tributions with periodic surface heat flux do begin to
converge for relatively large times. However, for short
times, the parabolic solution underestimates the
maximum temperatures by a large amount.

The effects of surface radiation on the surface tem-
perature are shown in Fig. 3 for f = 0.5 and 1.0.
Again, the hyperbolic and parabolic solutions are
both plotted for comparison. Due to the inclusion
of surface radiation, both hyperbolic and parabolic
solutions are calculated numerically. In Fig. 3, spikes
occurring at each discontinuity in the numerical solu-
tion result, as discussed previously, from the use of
the low Courant number. We notice that with surface
radiation, the hyperbolic and parabolic solutions con-
verge more rapidly. This was also demonstrated for
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F1G. 2(b). Analytic comparison of the effects of periodic

surface heat flux on hyperbolic and parabolic medium tem-

peratures for f = 0.5at time £ = 10 with no surface radiation
(le. &5 = 0).

several non-periodic cases in an earlier work [11].
The surface radiation not only lowers the tem-
peratures at the surface 5 = 0, but also brings the
maximum hyperbolic and parabolic temperatures
much closer together. This is due in part to the fact
that in the hyperbolic solution, more energy is radi-
ated to the ambient than in the parabolic solution
because the surface temperatures are larger. Thus,
when surface radiation is present, the parabolic heat
conduction equation does not underestimate the early
time temperatures as much as when no surface radi-
ation is present. The surface temperatures were also
calculated to a time ¢ = 10. At time & = 10, the hyper-
bolic and parabolic temperatures for f§ = 1 have con-
verged, and with the surface temperature near
0(0, &) = 0.95, seem to be nearing a steady-state value.
The periodic cases also appear to have reached a
quasi-equilibrium temperature distribution, with the
parabolic temperature oscillating between 0.75 and
1.05, while the hyperbolic temperature oscillates
between 0.55 and 1.1.

The medium temperatures at time & = | are shown
in Fig. 4 with the presence of surface radiation for
go = 1.0. The shape of the curves seem to resemble
those in Fig. 2(a) except that the magnitudes of the
temperatures are reduced as a result of the surface
radiation. The time for convergence between the § = 1
solutions is also much less due to the radiation losses.
The spikes on the temperature pulses are again a result
of the dispersive effect of the leading error terms.

In conclusion, the parabolic heat conduction equa-
tion underestimates the temperatures near the sur-
face for early times when a periodic surface heat flux

D. E. Grass et al.
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FiG. 3. Comparison of the effects of periodic surface heat
flux and surface radiation on the hyperbolic and parabolic
surface temperatures with g = 1.
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FiG. 4. Comparison of the effects of periodic surface heat
flux and surface radiation on the hyperbolic and parabolic
medium temperatures with ¢, = 1 at time £ = 1.

of extremely short periods is applied. The hyperbolic
and parabolic solutions converge in the interior region
both with increasing distance from the surface and
increasing time. Also, the convergence of the hyper-
bolic and parabolic solutions occurs more rapidly
with increasing surface radiation.
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APPENDIX

In the following analysis, we follow the formalism used in
ref. [9] to prove Duhamel’s theorem for the case of periodic
hyperbolic heat conduction. The governing equations are

1 < T, OT(r, z))

2 —_
VT(r,t) + + g(r f) = " ar 3

inregion R, t >0 (Ala)
q(r, )+ AT, ) = fi(r,f) onboundary S;, >0

(Alb)
T(r,)= F(r) inregionR,t=0 (Alc)
oT
——gi) =0 inregion R, ¢t =0 (Ald)
where ¢(r, ) is obtained from
5‘1( ) _ 5T(r, 3]
+q(r, ) = — an, (Ale)
with
q(r,0) = go(r) inregion R, t=0. (Alf)

We now consider the following auxiliary problem in which
@ (r,¢,7) is the solution of problem (A1) on the assumption
that the non-homogeneous terms f(r, ?) and g(r, 1) do not
depend on time

Vo (r, 1)+ £ a(0y) = i( ¢(r,t,v)+a¢(r,t,y))

or? ot

inregion R, 1 >0 (A2a)

HMT 30:8-E
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Y, ,7)+ho @, 1,7) = fi(r,7)
on boundary S;, ¢ >0 (A2b)

¢(r,t,y)=F@) inregionR,t=0 (A2¢)
%(’;’t”—y) —0 inregionR, =0 (A2d)
where Y(r, t,y) is obtained from
BANGLY)) _goety)
T + Y(r,¢y) = B (A2¢)
with
Y(r,t,7) = qo(r) inregion R, t=0. (A2f)

The Laplace transform of equations (Ala)-(Alf) with
respect to ¢ gives

V3T (r,s) + %g’(r, 5) = é(rsz T(x,s)—tsF(r)

aT(r 0)

+ sT(r,5)— F(r)) inregion R (A3a)

q(r, s)+hiT(r, s) = fi(r,s) onboundaryS; (A3b)

aT(r,s)
k on;

t[sq(r, 5) = qo(D] +4(r,5) = ~ (A3c)

where s is the Laplace transform variable. Similarly, the
Laplace transform of the auxiliary problem (A2) with respect
to t becomes

1 I
V2$(r1 S, )’) + s_k g(l’, y) = &(‘532&(" S, ?)

—sF ()~ rad’(r 09} b sm- F(r>>
inregion R (Ada)
Y, s, 9)+hd,s,y) = %f,-(r, y) onboundary S; (A4b)
‘L’[SY(I',S, 7)—q0(r)]+Y(r3S! 7) = _km (A4C)

on;

We now operate on equations (A4) with the operator

I e 7dy
[

and utilize the definition of the Laplace transform and obtain
= 1 1 =
2 — g = — 2 —_
VIg(r,) +— 9 s) = (rs 6.9 —F®

; 64’(; 0.9 . 35— F(r)/s)

inregion R (A5a)

= = 1
Y(r,5)+ho@,s) = B fi(r,s) onboundary S; (ASb)

s (x, $) — go@/s] + T(r, 5) = —k@a%ﬂ (A5¢)
since
$(,5.9) = $(x, 9). (ASd)
Also, ¢ (r,s) is defined as
5 j f e Ut g (r, 1,7)drdy. (A6)

Now multiply both sides of equations (A5a)-(A5c) by s
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V2s¢(r s+ - q(r 5) = f<rs2[s¢ (r, 5)]

—sFin)—1 6¢((3 + s[sgb r-~-F (ﬂ)
inregion R (A7a)
sY(r, )+ his (r,5) = Jir,s) on boundary 5, (A7b)

‘f[sz?(l‘ss)—qo(r)]+s§'(r, 5) = ..,k_avd’ (r, 5).

(A7c)

A comparison of equations (A3a)-(A3c) and (A7a)_(A7c)
reveals that they are identical problems if

i’(r, sy = sq; (r,s) {A8a)
yielding
Y, = SJ‘ j e Ut B(r,,7)dtdy (A8
0 0
and
a(r,9) = sT(r,9) (AS¢)
yielding

fi(r,s):sJ. J- e Y(r,1,y)drdy.  (ASd)
i) i

Now consider a general function ¢ (r,7,7) where the con-
volution is

PHr 0 = L ¢, 1—y,y)dy (A9)

and the Laplace transform of this generalized convolution
becomes

Llg*r, ] = ¢*(r, ) (A10)

D. E. GLASsS ef al.

=J J‘ e O g (r,1,y)dr dy.
0 Jo

A comparison of equations (A8a), (A8b) and (A10) yields

LT, 0] = sg*(x,5). (AlD
By the definition of the Laplace transform, we have
O *(r, ¢
LT 0] = ff( ¢ a(t' )> (A12)
since
¢*(x,0) = 0. (A13)
Now invert equation (A12)
S *(r,
T = 22700 (Al4)
at
Use equation {A9) to obtain
ITrn= Jd)(t —nndy (A15)

which is Duhamel’s theorem. If differentiation is performed
under the integral sign, cquation {A15) becomes

To=F@+ 3{<;5(1‘, 7,7} dy. (A16)
If only one of the boundary conditions, say, at the surface
i =1, i5 non-homogeneous and a function of time only (i.c.
f1(D), then equation (A16) can be written as

! i
T(r.0) = F@ + f SNz oE NG (A1)

where ¢(r, 1) is the solution of the auxiliary problem (A2)
with f(r,y) replaced by the Dirac delta function 8 ,,. Clearly,
equation (A17) is the specific form of Duhamel's theorem
used in equation (Sa) in the text.

EFFETS NON-FOURIER SUR LA TEMPERATURE VARIABLE RESULTANT D’UN
FLUX PERIODIQUE TOUT-OU-RIEN

Résumé—Les températures variables résultant d'une condition aux limites de flux tout-ou-rien se rencon-
trent dans plusieurs applications, et parmi d’autres, le frittage des catalyseurs et 'utilisation des impulsions
laser pour traiter les semi-conducteurs. Dans de telles conditions, la durée des impulsions est si courte
(picoseconde-nanoseconde) que le phénoméne classique de diffusion thermique disparait et la nature
ondulatoire de la propagation d’énergie caractérisée par I'équation hyperbolique de la chaleur gouverne
1a distribution de la température dans le milieu. On présente ici une solution analytique explicite pour un
probléme de conduction thermigue linéaire et variable dans un milieu semi-infini soumis 4 un flux périodique
tout-ou-rien 4 la frontiére x = 0, en résolvant 1’équation hyperbolique de la chaleur. Le cas non-linéaire
pour un rayonnement de la surface est étudié numériquement.

EINFLUSS EINES PERIODISCHEN EIN-AUS-SCHALTENS DES WARMESTROMS AUF
DEN ZEITLICHEN TEMPERATURVERLAUF IN EINEM KORPER

Zusammenfassung—Zeitliche Temperaturverldufe, welche von einem periodischen Ein- und Aus-Schalten
eines Wiirmestroms als Randbedingung herrithren, sind vielfach anzutreffen : unter anderem beim Sintern
von Katalysatoren, was hiufig beim Ausbrennen von Koks vorkommt und beim Einsatz von Laserimpulsen
zum Brennen von Halbleitern. In solchen Situationen ist die Impulsdauer so klein (z.B. Pico-, Nano-
sekunden), daB das klassische Wirmeausbreitungsphinomen zusammenbricht und die Wellennatur der
Energieausbreitung nach der hyperbolischen Wirmeleitgleichung die Temperaturverteilung in dem
Medium bestimmt. In dieser Arbeit wird fiir ein lineares transientes Wirmeleitproblem in einem halb-
unendlichen Medium, das einem periodischen Ein- und Aus-Schalten des Wirmestroms an der Grenz-
fliche x = 0 unterworfen ist, eine explizite analytische Losung der hyperbolischen Wirmeleitgleichung
vorgestellt. Der nichtlineare Fall, der den zusitzlichen Einfluf der Oberflichenstrahlung an eine
externe Umgebung berticksichtigt, wird numerisch untersucht.



Non-Fourier effects on transient temperature resulting from periodic on—off heat flux

BJINAHUE ABJEHUH, HE MTOAYUHSIOMMUXCSA 3AKOHY ®VPLE, HA
HECTALIMOHAPHOE TEMITIEPATYPHOE IIOJIE, BbI3BBAHHOE NMEPHOJNUYECKHM
TEIIJIOBBIM TITOTOKOM

Amnoramus—HecraunonapHoe TeMnepaTypHOe NoJI€, BO3HHKAIOLEE NPH HAIHYHY NEPHOIHYECKOro Ten-
JIOBOTO MOTOKA Ha FpaHHIle, IIHPOKO NMPHMEHAECTCA HAa NPAaKTHKE, HANpUMED, NMPH CINICKaHHH KaTaJIH3a-
TOpa, NPH BBLIFOPAHHHM KOKCA, d TaKke NPH HCNOJIbIOBAHMH JIA3EPHBIX HMMIYJLCOB AJA OTXKHra
noJynpoBOAHNKOB. B Tex ciyyasx, Koraa MUTMTENLHOCTE MMITYJILCOB HACTOJILKO Mafa (T.e. OT IHKOCe-
KYHI IO HAHOCEKYHA), YTO Knaccuyecknit 3akoH qupdy3HH Temna HapyumaeTcs, pacnpejcieHHe TeMnepa-
Typsl B cCpelic ONpeeNseTCs BOJHOBOH TPHPOAOH# pacmpoCTpaHEeHHS OHEPTHH M OMHCHIBAETCH
runepGONHYECKHM YPaBHEHHEM TeILIONpOBOAHOCTH. B nanHo# paGoTe Ha ocHoBe rHnep6onHyecKoro
YpaBHEHHsSI IPHBOAHTCA ABHOE AHAJMTHYECKOE PELUCHHE NIMHEHHON HeCTauMOHApHOM 3aJavH TEMIOMpo-
BOIHOCTH B NonybGeckoHeyHOH cpene, HaXoaseHcs MO BO3AEHCTBHEM NMEPHOAMYECKOTO NOTOKA Teria
Ha rpanuue x = 0. HenuHeliHnit ciyvail, paccMaTpHBAIOLIMA HajiM4He H3JIyYCHHA C MOBEPXHOCTH B
okbyxalouUlylo cpeay, H3y4aeTcs YHCIICHHO.
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